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Basic assumptions which characterize the PARISER-Parr-PorLE method of computing
molecular electronic wave functions are critically examined. By restricted variational calcula-
tion of the valence state of carbon and nitrogen atoms and ions, it is demonstrated that the
usual methods of evaluation of one-centre Coulomb integrals and atomic core energies are
rather good. A semi-theoretical means of estimating the core resonance integral is proposed
and shown to give fair agreement with the empirical values for C—C, 0—O0, C—N, and C—0O
bonds.

Die Grundannahmen der Methode von ParR1sER-PARR-PoPLE zur Berechnung molekularer
Wellenfunktionen werden kritisch durchleuchtet. Mittels beschrinkter Variationsansitze fiir
den Valenzzustand von Kohlenstoff- und Stickstoff-Atomen und -Ionen wird dargelegt, daB
die Methoden, wie sie iiblicherweise zur Berechnung von Einzentren-Coulombintegralen und
atomaren Rumpfenergien angewendet werden, zu recht guten Ergebnissen fiihren. Ferner
wird ein halbtheoretisches Verfahren zur Abschitzung der Rumpfresonanzintegrale vorge-
schlagen und nachgewiesen, dafl das Resultat gut mit den empirischen Werten fiir die C—C-,
0—O0-, C—N- und C—O-Bindung iibereinstimmt.

Les hypothéses fondamentales de la méthode de Pariser-PARR-PoPLE pour le calcul des
fonetions d’onde électroniques sont examinées critiquement. Un calcul variationel limité des
états de valence des atoms et ions de carbone et de nitrogéne montre que les méthodes usuelles
pour levaluation des intégrales de Coulomb monocentriques et des énergies de coeur atomi-
ques sont assez bonnes. Nous proposons un procédé semithéorique pour évaluer 'intégrale de
résonance de coeur, qui s’accorde assez bien aux valeurs expérimentales pour les liaisons C—C,
0—0, C—N et C—O.

L. Introduetion

In spite of the rapid progress in electronic computers in recent years, and its
widespread influence on the computation of molecular wave functions, a need for a
simple and effective semiempirical theory still exists, and will probably continue
to exist for some time. The PARISER-PARR-POPLE method*** [9, 12, 15]is the most
promising method to meet such a need for conjugated systems.

* The research reported in this paper was sponsored in part by the King Gustaf VI Adolf’s
70-Years Fund for Swedish Culture, Knut and Alice Wallenberg’s Foundation, the Swedish
Natural Science Research Council, and in part by the Aeronautical Research Laboratory, OAR,
through the European Office, Aerospace Research, United States Air Force, and also in part
by the National Aeronautics and Space Administration Research Grant NsG-512.

** On leave of absence from the Department of Chemistry, Faculty of Science, Hokkaido,
University, Sapporo, Japan.

*x* This will be abbreviated to the P-P-P Method hereafter.
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The method has been applied quite extensively to hydrocarbon molecules and
also to a number of N- and O-containing heterocyclic molecules [74]. Good agree-
ment with experiment has been obtained in these cases.

The P-P-P method involves a few basic assumptions which are foreign to the
conventional method for calculating molecular electronic wave functions. There
have been, therefore, several attempts to try to see the nature of these assump-
tions and to find out their functions and limitations. Particularly notable efforts
have been made by Parr [13]. One aim of this paper is to reinforce this effort.

To treat the core resonance integrals as empirical parameters is one of the
characteristic assumptions of the P-P-P method. This renders nice flexibility to
the theory. However, if we want to apply the theory to big heterocyelic molecules,
there appears quite a number of core resonance integrals, and it is difficult to treat
all of them as empirical parameters. Another aim of this paper is to present a
semi-theoretical means of evaluating core resonance integrals, though the estimate
is bound to be very crude.

In the next section, a brief account of the P-P-P method is given. The nature
of the assumption of the neglect of differential overlap and that of the so-called
L-A correction is discussed in Section ITI and Section IV, respectively. In Section
V, a semitheoretical estimate of core resonance integrals is deseribed and dis-
cussed.

I1. Characteristic Assumptions of the Pariser-Parr-Yople Method
The theoretical framework of the P-P-P method is the same as that of anti-
symmetrized product of molecular orbitals in the LCAO approximation with or
without configuration interaction. It has been applied only to s-electron systems
and the basic approximation is the ¢-7 separation. Thus the total wave function
@ is expressed as:

O~A4[(X)ID)] ,

where the antisymmetrized o-part of the wave function (X) is assumed to be
common to all the states in which we are interested. Under this approximation,
it is possible to introduce an effective Hamiltonian H” for the m-electron system:

@ @ 1
H® — Z f (7/) + Z‘T N
B i<j T
where atomic units are used. The one-electron operator f consists of the kinetic
energy operator and of the potential operator due to nuclei and ¢-electrons. The

total z-electron energy E” can be written as:
B = (I | H | (II)y .

The P-P-P method differs from the orthodox method (sometimes called the
ab-initio or non-empirical method) in the method of handling various molecular
integrals. These molecular integrals are defined over basic atomic orbitals and
appear in the energy expression E”.

There are three basic assumptions in the P-P-P method:

(A) Neglect of differential overlap.

Whenever the expression yq (1) xp (1) dv; (@ # b) appears under an integral
sign, the integral is put equal to zero, y4 and yp are atomic orbitals centred on
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atom a and b respectively. This brings about enormous simplification. The overlap
matrix becomes diagonal:

Sw = [ 28 W (9) dor = 000

and the electron interaction integrals become
1
(ab | cd) EJ%: (1) 2 (1) - 15(2) ya (2) dvy dvy = Bap Seq (2] co) .
12

Thus all the difficult integrals — two-centre exchange and hybrid and many-
centre integrals — disappear.
(B) The core resonance integrals between nearest neighbours are treated as
empirical parameters. Those between non-neighbours are neglected.
(O) The one-centre Coulomb integrals (aa | aa) are evaluated by the following
formula:
(o |aa) = Iy — A4 ,

where I, and. 4, are the ionization potential and the electron affinity of the orbital
¥a, When the atom a is in an appropriate valence state.

In order to carry out an actual calculation, we have to know how to evaluate
the core Coulomb integrals and two-centre Coulomb integrals. Although the
method of evaluation of these integrals is important for actual caloulations, it is
not- as basic as the three assumptions mentioned above. We would not, therefore,
go into details of the method in this paper.

H1. The Zero Differential Overlap Approximation

The magnitude of overlap integrals between neighbouring 2 p & orbitals in
usual conjugated molecules is 0.25 ~ 0.33. It looks, therefore, very drastic to
neglect these quantities in comparison with 1.

Lowpin [6] and Parr [13] have suggested that this may be justified by assum-
ing that the basic AO’s used in the P-P-P method are Lowdin’s symmetrically

orthogonalized AQ’s (AQ’s) [5]. If orthogonalized AO’s of this type are used as a
basis, the overlap matrix is diagonal and many-centre integrals as well as two-
centre hybrid and exchange integrals are generally very small in comparison with
the two-centre Coulomb integrals [77*.

A question arises in this connection: What is the repercussion of this interpre-
tation on the values of other molecular integrals ¢ The core resonance integrals
and the one-centre Coulomb integrals are determined empirically so there is no
problem about these**. The difference between two-centre Coulomb integrals

defined over usual AQ’s and AQ’s are less than 0.23 eV for trans-butadiene,

* The smallness of these integrals in the symmetrically orthogonalized AQ basis is connect-
ed with the remarkable accuracy of the Mulliken approximation:

N
%o () o (1) = 5 lza (1) e (1) + 70 (1) 20 (1)]

which is often used in evaluating many-centre integrals [2, 6].

** In fact, by using symmetrically orthogonalized AO’s as the basis, it is possible to repro-
duce empirical values of the core resonance integrals by a semi-theoretical estimate (cf Sec-
tion V).
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cyclo-butadiene and benzene [7, 14]. These differences can be shown to be small in
general, by using again the Mulliken approximation [2], and can therefore be
safely ignored.

The biggest difference occurs in the estimate of the core Coulomb integral. Let
us discuss the homo-polar two-centre problem (e. g. C = C) for the sake of simpli-
city. Then the AO y, can be expanded in terms of the original overlapping AO’s
%o and yp as follows:

- 3 1
Ta= (14 58) - 5 8m+ 0 . ()

Using this, we expand the core Coulomb integral xcore and exchange integral
ﬂcore

Foore = (7, | £|7a) = (1 -+ 89 acore — § eore . 0 (%)
Beore = (74 | f | 7o) = (1 + %) peore — § aeore 4 0 (S9) .
Eliminating feore from these equations, we obtain
xeore — eore _ Sﬁzzore + 0 (S?') .
The second term. — SECOTQ isabout 0.7 ¢V in C,H, and C;H,. Although the change in

acore’y by changing the basis from AO’s to AO’s is not negligible, it seems certain
that the changes are not excessive (less than 1 eV).

There is another set of orthogonalized AO’s which might be considered as the
basis in the P-P-P method. The whole space is split into regions and each AO has
finite values within a particular region and vanishes identically outside of that
region. The simplest way of making these orbitals is to cut off tails of each AO at
the boundary of an allocated part and to renormalize it*.

The most attractive feature of these orbitals is that they satisfy rigorously the
zero differential overlap condition. However, fcore’s are necessarily zero for these
orbitals and this is clearly in contradiction to assigning non-zero values to these
integrals. It should be remembered that the MO’s are invariant by replacing AO’s
by 'AO’s for the cases where the coefficients of AQ’s in these MO’s are determined
by the molecular symmetry (e. g. 6MO in H,, and #MO’s in C,H, and C.H,). If
AOQ’s are replaced by the cut-off AO’s, the resulting MO’s would not be able to
describe the extra charge concentration between the nuclei when atoms are brought
together. Thig charge concentration is necessary for binding. Thus there seems to
e little hope in obtaining a satisfactory theory by using cut-off orbitals as the basis.

To conclude this section, we can perhaps say that by interpreting the basic
AQ’s used in the PARISER-PARR-POPLE method as the symmetrically orthogona-
lized AO’s, the zero-differential overlap assumption is justified (at least to some
extent) and the other basic assumptions are unaffected.

IV. The I-A Correction
The procedure to evaluate the one-centre Coulomb integrals by the formula
(aa | an) = Is— Aq

is called the I-A correction.

* The author’s attention has been called to these orbitals independently by M. Koraxi,
C. A. Courson, and G. G. HALL.
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This cannot be rationalized within the conventional MO LCAO scheme. The
necessity of this correction is most easily understood by recalling MOFFITT’s obser-
vation [8] that the conventional MO LCAO method is bound to fail in predicting
the energy difference between positive and negative ion pairs and two neutral
atoms. This difference is experimentarily 7-— 4. On the other hand, if we calcu-
late the difference assuming the ¢ and = orbitals are the same in the ions and
neutral atoms, we obtain simply the one-centre Coulomb integral (e | aa) for this
energy difference. It is well known that calculated one-centre Coulomb integrals
are much bigger than the I-A values.

The above argument is certainly crude. It has been pointed out by Browx
and HeErrERNAN that the form of the AO’s should depend on the electron density
at that atom [7]. It seems worth-while to examine the situation more carefully by
directing our attention to the dependence of the = and ¢-core functions on the =
charge density.

Let us take the carbon atom as an example. The energies of a positive ion B
[C*], of a negative ion # [C~] and of a neutral atom E [C] are then expressed as
follows:

E [C*] = E* (o),
E[C-]=E (o) + 2 W (1.2) + (aa | an),
E[C] =E(o)+ W (1.1),

where W (n, q) is defined by
Vo = (1|~ 54+000120) -

Here, v is the potential due to the o-core, n is the number of m-electron contri-
buted to the s-electron system from the atom (e. g. for C and pyridine-type N,
n = 1; and for pyrrole-type N, n = 2) and ¢ is the m-electron charge density on the
atom (g = 1 for C, 2 for C-). The potential 2 depends not only on » which deter-
mines the number of -electrons but also on ¢, because the ¢-core is deformed due
to the s;-charge density.

If the ¢ dependence of the quantity W is small, namely W (1.2)= W (1.1},
we then obtain

I— 4= (a | aa) + [E* (0) + E- (o) — 2 E (0)] .

The second term on the right-hand side always accompanies (aa | aa) and we can
regard the I-A value as representing the whole righthand side. Therefore, we
may set aside the second term for the moment.

The crucial and interesting question seems to be whether W (n, ¢) is really
insensitive to ¢ or not. To answer this question is difficult. In order to get an
estimate, we have calculated this quantity for C and N in their valence states,
using Slater-type AO’s. In the calculation, orbital exponents of 1 s, 25, 2 p o and
2 p 7 orbitals are varied freely so as to make the energy minimum.

The results of the calculations are shown in Tab. 1, 2 and 3.

From these tables, it is seen that, in spite of the noticeable changes in both
o and 7 orbitals, W (n, ¢) is fairly insensitive to the ¢ value for C and pyrrole-type
N. The difference is as much as —1.8 eV for pyridine-type N but we should
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Table 1. Valence state energy of C (ineV)

(0 ¢ Cc-

Electron configuration ............. (sp?)? (spx (sp?)3?
Orbital exponent of 1s ............. 5.65 5.65 5.65
Orbital exponent of 2s ............. 1.76 1.65 1.58
Orbital exponentof 2 po ........... 1.82 1.64 1.53
Orbital exponentof 2 pm ........... — 1.63 1.30
Totalenergy ..................... —1012.64 " —1022.53 —1018.43
G-COTE BNETZTY  « v vvevvrrnansnnnns —1012.64 —1011.60 —1009.90

.............................. — —10.94 —11.24
(A |7m) oo — 17.36 | 13.95

Table 2. Valence state energy of pyridine-type N (in eV)
N+ N N-

Electron configuration ............. (sp?)* (sp?)t7 (sp?)in?
Orbital exponent of s ............. 6.65 6.64 6.64
Orbital exponent of 2s ............ 2.04 1.94 1.86
Orbital exponent of 2 po .......... 215 1.96 1.79
Orbital exponent of 2pz .......... — 1.98 1.72
Totalenergy ..........c.oovinun.. —1461.96 —1474.27 —1469.59
O-COTE ENEIZY + vt errrrnuaannn —1461.96 —1458.76 —1460.43

.............................. — —15.51 —13.74
(| A7) oo — 21.09 18.32

Table 8. Valence state energy of pyrrole-type N (in eV )
N+* N+ N

Electron configuration ............. (sp?)? (sp?)Pn (sp?)3n?
Orbital exponentof 1s ............. 6.65 6.64 6.64
Orbital exponent of 2s ............ 219 2.08 1.98
Orbital exponent of 290 .......... 2.33 2.15 1.99
Orbital exponentod 2 pz .......... — 2.16 1.9
Totalenergy .........covvvviiin. —1434.27 —1462.74 —1471.56
O-COT@ BNETEY « v vvneaananrnnnnnns —1434.27 —1433.19 —1430.45

.............................. — —29.55 —30.72
(A | 7)o — 23.00 20.34

remember that in actual molecules, the N atom never has a s-electron charge as

i

great as 2, and the above difference may be regarded as an upper bound.
A usual procedure to evaluate W (n, ¢) is to use the following relation:

W(”aQ)Z _‘In »

where I, is the nth valence state ionization potential. The values of I are 11.186,
14 12, and 28.71 eV respectively [4]. We see, therefore, the usual estimate invol-

ves errors of less than 1 ¢V for C and N.

The conclusions from the present caleulations are (a) that effects due to changes
of orbitals tend to cancel each other and the net changes are rather small and (b)

that the usual assumption

WimD)=Wm2)= —1I,
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is valid within an error of 1 eV. It should be empbasized that these conclusions
are reached on the basis of calculations which are more general than the simple
minded method of using the same AO’s for positive and negative ions as well as
neutral atoms, but are still very limited. The present calculation is especially
inadequate for negative ions. Calculated electron affinities are negative and as
large as 4 ~ 5 eV. A single Slater AO is not adequate for describing the long tail
of the charge cloud of a negative ion. In order to obtain a decent electron affinity
value, we probably have to use two or more terms with different orbital exponents
for the orbital of a negative ion.

V. Semi-Theoretical Estimate of Core Resonance Integrals

The aim of this section is to propose a crude semi-theoretical expression of
core resonance integrals by which we can estimate their values in case it is difficult
to determine them semiempirically by some reason (e. g. due to lack of experitnen-
tal data or simply because there are too many f§’s).

Let us assume that the basic AO’s in the P-P-P method are Lowdin-type
symmetrically orthogonalized AQ’s. We simplify the problem to that of two
centres and neglect the presence of other atoms. Using the expansion (1), we ob-
tain:

- 1
T B 5 (@ o) 4 O(5Y
The operator f may be assumed to have the following form:
1
f: _?A-Fva‘}"vb ’

where v, is the potential due to the g-core of atom a. Next we introduce the Mayer-
Sklar approximation [3]*:

-

Neglecting the second and higher terms of S, we then obtain

7 core 1

50— (@ |6 |B) - (b oy | a)] - 5 S (@ |00 |a) + (b va]B)] -

1 1
——2—A+'vaua>:s<9{al*—2‘4‘+va Za>' (2)

In the homopolar case, the equation reduces to

B = (]2a]b) = S(a]vs]a) . (3)
The integral (@ | v, | @) may be approximated as follows
(a|vp | @) ~n(aa |bb) . 4)

The integral (@ | o4 | b) is more difficult to evaluate. The significant part of this
integral would come from the region near the mid-point of the internuclear separa-

tion. The value of the potential at the mid-point is — Fn,‘? . We replace the
potential by this constant value and integrate; the result is

* The Mayer-Sklar approximation in its original form is

1
(—_2‘A+Uu>%a=Wu2a .

Eq. (2) can be derived from the above relation but has probably a wider range of applicability.
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2
(a[vulb)N—nSE . (5)
Substituting (4) and (5) in (3), we arrive at
- 2
o =n8|— 7+ (aa|bb)| - (6)

There is no doubt that this estimate is very crude. We have neglected the
effects of atoms other than a and b and higher order terms of S and have used
approximations (2), (4), and (5). However the weakest link is probably the appro-
ximation (5). We would like to introduce a constant factor C on the right-hand
side of Eq. (5) and by this modification we obtain the final expression:

- 20
e =8 -7+(aa\bb) . {7

The extension to heteropolar two-centre cases under the same approximations is
straightforward. The values caleulated by Hq. (7) are compared with empirically-
determined § values in Tab. 4.

Table 4. Values of Core Resonance Integral (in eV )

.. Calculated
Molecule RN Empirical By (3) Bq (7 (C = 1) BT (C = 0.85)
CH, | 15 } 2020 | —280 —3.80 291
CeH, 139 | —2.39 —2.63 —3.42 —2.61
0O, 1.16 —5.382 —4.16 —7.46 . —b5.63
0O, 1.28 —3.282 —2.98 —4.96 —3.73
0, 1.40 —2.392 — —3.25 —2.43
0, 1.51 —1.96% — —2.13 —1.58
0O, 1.63 —1.692 — —1.40 —1.04
CN 1.36 —2.581 — -—2.75 —2.09
Cco 1.22 —2.86° — | —3.18 —2.42

1 PARISER, R., and R. G. Parr: J. chem. Physics 21, 767 (1953).

2 Fowur, F. G., and R. G. Parg: J. chem. Physics 21, 1864 (1953).

3 Ouxo, K: Unpublished result.

¢ Qverlap integrals are calculated by using Slater’s orbitals. Two-centre Coulomb integrals
are evaluated by the formula

(aa| bb) =

1
Ve a4

In Tab. 4, values of the right-hand side of Eq. (3) obtained by using the
purely theoretical molecular integrals [10, 11] are listed in Column. 4. These values
are not so different from the empirical values. This indirectly supports the analysis
leading to Eq. (3). In the case of CgH,, we can also estimate the effect of potential
due to the presence of atoms other than a and b. These potentials being included,
the calculated value becomes —3.19 eV.

In Column 6, the value of C = 0.85 was chosen just because it seems to give
a fair overall fit to the empirical values in the chosen cases. The agreement be-
tween the values in Column 3 and 7 is certainly not as good as we hope to obtain.
Nevertheless, the author feels that the proposed formula (7) may be useful in
getting the first approximation.
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Summary

One of the characteristic assumptions of the P-P-P method, namely the I-A
correction, was critically examined by taking into account deformation of both
g-core and z-orbitals due to different sz charge densities. Variational calculation of
valence state energies of carbon and nitrogen atoms and ions were carried out by
assuming Slater-type AO’s but by varying their orbital exponents. The results of
the calculations indicate that the effect of this deformation on the I-A correc-
tion is not very large. The results also indicate that the usual estimate of atomic
core energy (denoted in this article by W) as — [ is valid to within about 1 eV.

Some arguments are presented for the interpretation that the basic AO’s in the
P-P-P method are the LOwDIN-type orthogonalized AO’s. On the basis of this
interpretation, a erude but simple expression for the core resonance integral was
proposed. The estimate by this expression gives fair agreement with the empirical
values for C—C, O -0, C —N, and C -0 bonds.
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