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Basic assumptions which characterize the PAlCISER-PAIcl~-POPLE method of computing 
molecular electronic wave functions are critically examined. By restricted variational calcula- 
tion of the valence state of carbon and nitrogen atoms and ions, it is demonstrated that the 
usual methods of evaluation of one-centre Coulomb integrals and atomic core energies are 
rather good. A semi-theoretical means of estimating the core resonance integral is proposed 
and shown to give fair agreement with the empirical values for C--C, 0--O, C--N, and C--O 
bonds. 

Die Grundannahmen der Methode von PARISE~-PARR-PoPr,E zur Bcrechnung molekularer 
Wellenfunktionen werdcn l~'itisch durchleuchtet. Mittels beschr/inkter Variationsans~tze fiir 
den Valenzzustand yon Koh]enstoff- und Stickstoff-Atomen und -Ionen wird dargelegt, dab 
die Methoden, wie sie iiblicherweise zur Berechnung yon Einzentren-Coulombintegralcn und 
atomaren Rumpfenergien angewendet werden, zu reeht guten Ergebnissen fiihren. Ferner 
wird ein halbtheoretisches Verfahren zur Absch~tzung der Rumpfresonanzintegrale vorge- 
schlagen und nachgewiesen, dab das Resultat gut s i t  den empirischen Werten ffir die C--C-, 
O--O-, C--N- und C--O-Bindung iibereins~immt. 

Les hypotheses fondamentales de la m6thode de PAtCISEI~,-PAI~R-POI'LE pour le calcul des 
fonctions d'onde 61ectroniques sont examin6es critiquemeut. Un calcul variationel limit6 des 
@tats de valence des atoms et ions de carbone et de nitrog@ne montre que les m6thodes usuelles 
pour l'evaluation des int6grales de Coulomb monocentriques et des 6nergies de cocur atomi- 
ques sont assez bonnes. Nous proposons un proc6d6 semith6orique pour ~valuer l'int6grale de 
r6sonance de coeur, qui s'aecorde assez bien aux valeurs exp6rimentales pour les liaisons C--C, 
O--O, C--N et C--O. 

I. Introduction 

In  spite of  the  rapid  progress in electronic computers  in recent  years, and its 

widespread influence on the comput+t ion of  molecular  wave  functions,  a need for a 

simple and effective semiempirica] theory  still exists, and will probably  cont inue 

to exist for some time. The PAmSEm-PAaa-PoPLE method*** [9, 12, 15] is the most  

promising m e t h o d  to  meet  such a need for conjugated systems. 

* The research reported in this paper was sponsored in part by the King Gustaf VI Adolf's 
70-Years Fund for Swedish Culture, Knut and Alice Wallenberg's Foundation, the Swedish 
2qatural Science Research Council, and in part by the Aeronautical Research Laboratory, OAR, 
through the European Office, Aerospace Research, United States Air Force, and also in par+ 
by the National Aeronautics and Space Administration Research Grant NsG-512. 

** On leave of absem ce from the Department of Chemistry, Faculty of Science, Hokkaido, 
University, Sapporo, Japan. 

*** This will be abbreviated to the P-P-P Method hereafter. 
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The method has been applied quite extensively to hydrocarbon molecules and 
also to a number of N- and O-containing heteroeyelic molecules [14]. Good agree- 
ment  with experiment has been obtained in these eases. 

The P-P-P method involves a few basic assumptions which are foreign to the 
conventional method for calculating molecular electronic wave functions. There 
have been, therefore, several a t tempts  to t ry  to see the nature of these assump- 
tions and to find out their functions and limitations. Particularly notable efforts 
have been made by  PA~n [13]. One aim of this paper is to reinforce this effort. 

To t reat  the core resonance integrals as empirical parameters is one of the 
characteristic assumptions of the P-P-P method. This renders nice flexibility to 
the theory. However, ff we want to apply the theory to big heterocyclie molecules, 
there appears quite a number of core resonance integrals, and it is difficult to treat  
all of them as empirical parameters. Another aim of this paper is to present a 
semi-theoretical means of evaluating core resonance integrals, though the estimate 
is bound to be very crude. 

In  the next section, a brief account of the P-P-P method is given. The nature 
of the assumption of the neglect of differential overlap and that  of the so-called 
I-A correction is discussed in Section I I I  and Section IV, respectively. In  Section 
V, a semitheoretieal estimate of core resonance integrals is described and dis- 
cussed. 

II. Characteristic Assumptions of the Pariser-Parr-Pople Method 
The theoretical framework of the P-P-P method is the same as that  of anti- 

symmetrized product of molecular orbitals in the LCAO approximation with or 
without configuration interaction. I t  has been applied only to 7~-electron systems 
and the basic approximation is the a-~ separation. Thus the total  wave function 
~b is expressed as: 

r H A  [(Z) (H)] , 

where the antisymmetrized a-part  of the wave function (Z) is assumed to be 
common to all the states in which we are interested. Under this approximation, 
it is possible to introduce an effective Hamiltonian H a for the 7~-electron system: 

(n) (n) t 
H a =  Z f ( i )  + ~ - -  , 

7 

where atomic units are used. The one-electron operator f consists of the kinetic 
energy operator and of the potential operator due to nuclei and (~-electrons. The 
total  ~-electron energy E ~ can be written as : 

E ~ = { ( / ~ )  l~/~ [ ( n ) ) .  

The P-P-P method differs from the orthodox method (sometimes called the 
ab-initio or non-empirical method) in the method of handling various molecular 
integrals. These molecular integrals are defined over basic atomic orbitals and 
appear in the energy expression E% 

There are three basic assumptions in the P-P-P method: 
(A) Neglect of differential overlap. 
Whenever the expression Za (1) Zb (t) dv i (a ~ b) appears under an integral 

sign, the integral is put equal to zero, Za and Zb are atomic orbitals centred on 
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a tom a and b respectively. This brings about  enormous simplification. The overlap 
matr ix  becomes diagonal:  

and the electron interaction integrals become 

(~b 

Thus all the difficult integrals -- two-centre exchange and hybr id  and many-  
centre integrals - disappear. 

(B) The core resonance integrals between nearest neighbours are t rea ted  as 
empirical parameters.  Those between non-neighbours are neglected. 

(C) The one-centre Coulomb integrals (aa I aa) are evaluated by  the following 
formula : 

(aa  l aa) = I ~ -  A~ , 

where Ia and Aa are the imfization potential  and the electron affinity of the orbital 
Za, when the a tom a is in an appropriate  valence state. 

I n  order to carry  out an actual  calculation, we have to know how to evaluate 
the core Coulomb filtegrals and two-centre Coulomb integrals. Al though the 
method  of  evaluation, of  these integrals is impor tan t  for actual  calculations, it is 
not  as basic as the three assumptions mentioned above. We would not,  therefore, 
go into details of  the method  in this paper. 

III. The Zero Differential Overlap Approximation 
The magni tude  of overlap integrals between neighbouring 2 p ~ orbitals in 

usual conjugated molecules is 0.25 ~ 0.33. I t  looks, therefore, very  drastic to 
neglect these quantities in comparison with t. 

L 6 w m ~  [6] and PAmr [13] have suggested tha t  this m a y  be justified by  assum- 
ing tha t  the basic AO's  used in the P -P -P  method  are L6wdin 's  symmetrical ly 

or thogonahzed AO's  (AO's) [5]. I f  or thogonahzed AO's  of  this type  are used as a 
basis, the overlap matr ix  is diagonal and many-cent re  integrals as well as two- 
centre hybr id  and exchange integrals are generally very  small in comparison with 
the two-centre Coulomb integrals [7]*. 

A question arises in this connection:  W h a t  is the repercussion of  this interpre- 
ta t ion  on the values of other molecular integrals ~. The core resonance integrals 
and the one-centre Coulomb integrals are determined empirically so there is no 
problem abou t  these**. The difference between two-centre Coulomb integrals 

defined over usual A O's and AO's  are less than  0.23 eV for t rans-butadiene,  

* The smallness of these integrals in the symmetrically orthogonalized AO basis is connect- 
ed with the remarkable accuracy of the Mulliken approximation: 

S 
z~ (i) z~ (t) ~ 2 -  [zo (1) z~ (t) + z~ (t) z~ (1 ) ] ,  

which is often used in evaluating many-centre integrals [2, 6]. 
** In fact, by using symmetrically orghogonallzed AO's as the basis, i~ is possible to repro- 

duce empirical values of the core resonance integrals by a semi-theoretical estimate (cf Sec- 
tion V). 
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cyclo-butadiene and benzene [7, 14]. These differences can be shown to be small in 
general, by using again the Y[ulliken approximation [2], and can therefore be 
safely ignored. 

The biggest difference occurs in the estimate of the core Coulomb integral. Let 
us discuss the homo-polar two-centre problem (e. g. C = C) for the sake of simpli- 

city. Then the AO Za can be expanded in terms of the original overlapping AO's 
Za and Zb as follows: 

3 $2\ 1 

Using this, we expand the core Coulomb integral ~core and exchange integral 
core 

 ooro=(   f/l b) = (1 + $2) coro_ s  coro + 0(S ) . 

Eliminating/~core from these equations, we obtain 

~core = ~core _ ~ c o r e  _~ 0 (~3) . 

The second te rm -- Sfi c~ is about 0.7 eV in C2H ~ and C6H G. Although the change in 

~c~ by  changing the basis from AO's to AO's is not negligible, it seems certain 
that  the changes are not excessive (less than  ~ eV). 

There is another set of orthogonalized AO's which might be considered as the 
basis in the P-P-P method. The whole space is split into regions and each AO has 
finite values within a particular region and vanishes identically outside of that  
region. The simplest way of making these orbitals is to cut off tails of each AO at 
the boundary of an allocated part  and to renormalize it*. 

The most at tractive feature of these orbitals is that  they satisfy rigorously the 
zero differential overlap condition. However,/~c~ are necessarily zero for these 
orbitals and this Js dear ly  in contradiction to assigning non-zero values to these 
integrals. I t  should be remembered tha t  the MO's are invariant by replacing AO's 

by  AO's for the cases where the coefficients of AO's in these !V[O's are determined 
by the molecular symmetry  (e. g. (~MO in Ha, and ~MO's in C2H a and C~H6). I f  
AO's are replaced by  the cut-off AO's, the resulting MO's would not be able to 
describe the extra charge concentration between the nuclei when atoms are brought 
together. This charge concentration is necessary for binding. Thus there seems to 
be little hope in obtaining a satisfactory theory by using cut-off orbitals as the basis. 

To conclude this section, we can perhaps say that  by interpreting the basic 
AO's used in the PARISER-PA~R-PO1)LE method as the symmetrically orthogona- 
lized AO's, the zero-differential overlap assumption is justified (at least to some 
extent) and the other basic assumptions are unaffected. 

IV. The I-A Correction 

The procedure to evaluate the one-centre Coulomb integrals by  the formula 

(aa l aa) = In--  Am 
is called the I-A correction. 

* The author's attention has been called to these orbitals independently by M. KOTA~L 
C. A. CouLso~, and G. G. HALL. 
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This cannot be rationalized within the conventional MO LCAO scheme. The 
necessity of this correction is most easily understood by recalling ~orrImT'S obser- 
vation [8] that  the conventional MO LCA0 method is bound to fail in predicting 
the energy difference between positive and negative ion pairs and two neutral 
atoms. This difference is experimentarily I -  A. On the other hand, if we calcu- 
late the difference assuming the a and 7~ orbitals are the same in the ions and 
neutral atoms, we obtain simply the one-centre Coulomb integral (aa I aa) for this 
energy difference. I t  is well known that calculated one-centre Coulomb integrals 
are much bigger than the I-A values. 

The above argument is certainly crude. I t  has been pointed out by Baowx 
and tIErr~RgaX that the form of the AO's should depend on the electron density 
at that  atom [1]. I t  seems worth-while to examine the situation more carefully by 
directing our attention to the dependence of the ~ and a-core functions on the 
charge density. 

Let ns take the carbon atom as an example. The energies of a positive ion E 
[C+], of a negative ion E [C-] and of a neutral atom E [C] are then expressed as 
follows : 

E [C+] = E+ (a), 

E [C-] = E -  (a) + 2 W (1.2) + (aa l aa), 

E [el  = E (~) + W (tA),  

where W (n, q) is defined by 

( ) w ( ~ , q ) =  x (q)  l - ~ z ~ + v ( ~ , q ) [ z ( q )  �9 

Here, v is the potential due to the a-core, n is the number of 7~-electron contri- 
buted to the me-electron system from the atom (e. g. for C and pyridine-type N, 
n = t ; and for pyrrole-type N, n = 2) and q is the ~-electron charge density on the 
atom (q = t for C, 2 for C-). The potential v depends not only on n which deter- 
mines the number of a-electrons but also on q, because the a-core is deformed due 
to the ~-charge density. 

I f  the q dependence of the quantity W is small, namely W (1.2) - -  W (1.t), 
we then obtain 

I -  A = (aa I aa) + [E + (a) + E -  (a) - -  2 E (a)] . 

The second term on the right-hand side always accompanies (aa ] aa) and we can 
regard the I-A value as representing the whole righthand side. Therefore, we 
may set aside the second term for the moment. 

The crucial and interesting question seems to be whether W (n, q) is really 
insensitive to q or not. To answer this question is difficult. In order to get an 

estimate, we have calculated this quantity for C and N in their valence states, 
using Slater-type AO's. In the calculation, orbital exponents of i s, 2 s, 2 p a and 
2 p Jr orbitals are varJied freely so as to make the energy minimum. 

The resnlts of the calculations are shown in Tab. i, 2 and 3. 
From these tables, it is seen that, in spite of the noticeable changes in both 

and 7~ orbitals, W (n, q) is fairly insensitive to the q value for C and pyrrole-type 
N. The difference is as much as - 1 . 8  eV for pyridine-type N but we should 
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Table 1. Valence state energy o/C (in eV) 

Electron configuration . . . . . . . . . . . . .  
Orbital  exponent  of i s  . . . . . . . . . . . . .  
OrbitM exponent  of 2s . . . . . . . . . . . . .  
Orbital exponent  of 2 pa  . . . . . . . . . . .  
Orbital exponent  of 2 p~ . . . . . . . . . . .  

Total energy . . . . . . . . . . . . . . . . . . . . .  
a-core energy . . . . . . . . . . . . . . . . . . . .  
W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

( ~  [ ~ )  . . . . . . . . . . . . . . . . . . . . . . . . .  

C + C C- 

5.65 
1.76 
1.82 

--1012.64 
--1012.64 

5.65 
1.65 
1.64 
1.63 

--1022.53 
--1011.60 

--10.94 
17.36 

5.65 
1.58 
1.53 
1.30 

--1018.43 
--1009.90 

--11.24 
13.95 

Table 2. Valence state energy o/pyridine-type N (in e V) 

Electron configuration . . . . . . . . . . . . .  
Orbital  exponent of l s  . . . . . . . . . . . . .  
Orbital exponent  of 2 s . . . . . . . . . . . .  
Orbital  exponent  of 2 p a . . . . . . . . . .  
Orbital  exponent  of 2 p 7~ . . . . . . . . . .  

Total energy . . . . . . . . . . . . . . . . . . . . .  
a-core energy . . . . . . . . . . . . . . . . . . . . .  
W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

( ~  [ ~ )  . . . . . . . . . . . . . . . . . . . . . . . . .  

N + N N -  

(sp2) ~ 
6.65 
2.04 
2.15 

--1461.96 
- -146t .96  

6.64 
1.94 
1.96 
1.98 

--1474.27 
--1458.76 

--15.51 
21.09 

(sp2)4z~ ~ 
6.64 
1.86 
1.79 
1.72 

--1469.59 
--~460.43 

--13.74 
18.32 

Table 3. Valence state energy o/pyrrole-type N (in eV) 

Electron configuration . . . . . . . . . . . . .  
Orbital exponent  of Is  . . . . . . . . . . . . .  
Orbital exponent  of 2 s . . . . . . . . . . . .  
Orbital  exponent of 2 p a . . . . . . . . . .  
Orbital  exponent  od 2 p z . . . . . . . . . .  

Total energy . . . . . . . . . . . . . . . . . . . . .  
c-core energy . . . . . . . . . . . . . . . . . . . . .  
W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

( ~  I ~ )  . . . . . . . . . . . . . . . . . . . . . . . . .  

N+ * N+ N 

(sp2) 3 

6.65 
2.19 
2.33' 

--1434.27 
--1434.27 

6.64 
2.08 
2.15 
2.16 

--1462.74 
--1433.19 

--29.55 
23.00 

6.64 
1.98 
1.99 
1.91 

- - t471.56 
--1430.45 

--30.72 
20.34 

r e m e m b e r  that i n  a c t u a l  mo lecu le s ,  t h e  N a t o m  n e v e r  h a s  a z - e l e c t r o n  c h a r g e  as 

g r e a t  as  2, a n d  t h e  a b o v e  d i f f e r ence  m a y  b e  r e g a r d e d  as  a n  u p p e r  b o u n d .  

A u s u a l  p r o c e d u r e  t o  e v a l u a t e  W (n, q) is t o  use  t h e  fo l lowing  r e l a t i o n :  

W ( n , q ) =  - I n  , 

w h e r e  J n  is t h e  n t h  v a l e n c e  s t a t e  i o n i z a t i o n  p o t e n t i a l .  T h e  v a l u e s  of  I n  a re  t i . 1 6 ,  

i 4  12, a n d  2 8 . 7 i  e V  r e s p e c t i v e l y  [4]. W e  see, t h e r e f o r e ,  t h e  u s u a l  e s t i m a t e  i n v o l -  

v e s  e r ro r s  of  less t h a n  l e V  fo r  C a n d  N.  

T h e  c o n c l u s i o n s  f r o m  t h e  p r e s e n t  c a l c u l a t i o n s  a re  (a) t h a t  e f fec ts  d u e  to  c h a n g e s  

of  o r b i t a l s  t e n d  t o  c a n c e l  e a c h  o t h e r  a n d  t h e  n e t  c h a n g e s  a re  r a t h e r  s m a l l  a n d  (b) 

t h a t  t h e  u s u a l  a s s u m p t i o n  

W ( n , l ) =  W ( n ,  2 ) =  - I ~  
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is valid within an error of I eV. I t  should be emphasized tha t  these conclusions 
are reached on the basis of calculations which are more general than the simple 
minded method of using the same AO's for positive and negative ions as well as 
neutral atoms, but o, re still very limited. The present calculation is especially 
inadequate for negative ions. Calculated electron affinities are negative and as 
large as 4 ~ 5 eV. A single Slater A0  is not adequate for describing the long tail 
of the charge cloud of a negative ion. In  order to obtain a decent electron affinity 
value, we probably have to use two or more terms with different orbital exponents 
for the orbital of a negative ion. 

u Semi-Theoretical Estimate of @ore Resonance Integrals 

The aim of this section is to propose a crude semi-theoretical expression of 
core resonance integrals by  which we can estimate their values in ease it is difficult 
to determine them semiempirieally by some reason (e. g. due to lack of experhnen- 
tal  data  or simply because there are too many/~'s). 

Let  us assume that  the basic AO's in the P-P-P method are L6wdin4ype 
symmetrically orthogonalized AO's. We simplify the problem to that  of two 
centres and neglect the presence of other atoms. Using the expansion (t), we ob- 
tain : 

- -core  core 1 = fic~b - -  ~ S " cor~ core #~b ( ~  + ~ b  ) + O ( S  ~) 

The operator f i n n y  be assumed to have the following form: 

I 
f = - - ~ A + v ~ + v b  , 

where va is the potential due to the ~-core of atom a. Next  we introduce the Mayer- 
Sklar approximation [3]*: 

= s  �9 (2) 

Neglecting the second and higher terms of S, we then obtain 

- -core  1 I t 

In the homopolar case, the equation reduces to 

- -core  
= I b) - s i - ( a )  

The integral (a ] vb r a) may  be approximated as follows 

The integral (a Iva ] b) is more difficnit to evaluate. The significant part  of this 
integral would come from the region near the mid-point of the internuclear separa- 

n 
tion. The value of the potential at the mid-point is - R/--2" We replace the 

potential by this constant value and integrate; the result is 

�9 The Mayer-Sklar approximation in its original form is 

Eq. (2) can be derived from the above relation but has probably a wider range of applicability. 
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. ( 5 )  

Subs t i tu t ing  (4) and  (5) in (3), we arr ive  a t  

fi~b = n S  - -  ~ + ( a a l b b )  (6) 

There  is no d o u b t  t h a t  th is  es t imate  is ve ry  crude. W e  have  neglected the  
effects of  a toms  o ther  t h a n  a and  b and  higher  order  t e rms  of S and  have  used 
approx ima t ions  (2), (4), and  (5). However  the  weakes t  l ink is p r o b a b l y  the  appro-  
x ima t ion  (5). W e  would  like to  in t roduce  a cons tan t  fac tor  C on the  r igh t -hand  
side of Eq.  (5) and  b y  this  modif icat ion we ob ta in  the  final expression : 

( -  J f l c ~  - -  ~ -  + ( a a l b b )  . (7) 

The extension to he te ropola r  two-cent re  cases under  the  same approx ima t ions  is 
s t ra ight forward .  The  values  ca lcu la ted  b y  Eq.  (7) are compared  wi th  empir ical ly-  
de te rmined  fi values  in Tab.  4. 

Table 4. 

Molecule 

C2H 4 1.35 
C6H ~ i.39 

O~ IA6 
O 2 1.28 
02 1.40 
02 1.51 
02 1.63 
CN 1.36 
CO 1.22 

Values o] Core Resonance Integral  ( in  eV )  

Empirical 

--2.921 
--2.391 
--5.383 
--3.28 ~ 
--2.392 
--1.96 ~ 
- - t  .69 ~ 
--2.581 
--2.86 a 

Eq (3) 

--2.80 
--2.63 
--4A6 
--2.98 

Calculated 
Eq (7) 4 (C = ~) 

--3.80 
--3.42 
--7.46 
~ . 9 6  
--3.25 
--2A3 
- -a  .40 
--2.75 
--3A8 

Eq(7p (C = 0.85) 

--2.91 
--2.6q 
--5.63 
--3.73 
--2.43 
~-1.58 
--1.04 
--2.09 
--2.42 

: PA~ISE~, R., and R. G. P A ~ :  J. chem. Physics 21, 767 (1953). 
2 FuM:, F. G., and 1~. G. P A ~ :  J. chem. Physics 21, 1864 (1953). 
3 OHio, K: Unpublished result. 

Overlap integrals are calculated by using Slater's orbitals. Two-centre Coulomb integrals 
are evaluated by the formula 

t t 
(aa I bb) - 1 / -~ - -~ -~- '  d - I - -  A . 

I n  Tab.  4, values of the  r igh t -hand  side of Eq.  (3) ob ta ined  b y  using the  
pure ly  theore t ica l  molecular  in tegrals  [10, 11] are l is ted in Column 4. These values  
are  no t  so different  f rom the  empir ica l  values.  This  ind i rec t ly  suppor t s  the  analysis  
leading to  Eq.  (3). I n  the  case of C6H 6, we can also es t imate  the  effect of po ten t i a l  
due to  the  presence of a toms  o ther  t h a n  a and  b. These poten t ia l s  being included,  
the  ca lcu la ted  value  becomes - 3 . i 9  eV. 

I n  Column 6, the  va lue  of C = 0.85 was chosen jus t  because i t  seems to give 
a fair  overal l  fit  to  the  empir ica l  values  in  the  chosen cases. The agreement  be- 
tween  the  values  in Column 3 and  7 is cer ta in ly  no t  as good as we hope to  obtain .  
I~evertheless,  the  au thor  feels t h a t  the  proposed  formula  (7) m a y  be useful in 
ge t t ing  the  first approx ima t ion .  
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Summary  

One of  the  character is t ic  assumpt ions  of  the  P - P - P  method ,  n a m e l y  the  I - A  
correction,  was cr i t ica l ly  examined  b y  t ak ing  into account  de format ion  of bo th  
or-core and  7~-orbitals due to  different  ~ charge densit ies.  Var ia t iona l  ca lcula t ion of  
valence s ta te  energies of carbon and  n i t rogen  a toms  and  ions were carr ied  out  b y  
assuming S la te r - type  AO's  bu t  b y  va ry ing  the i r  orb i ta l  exponents .  The results  of  
the  calculat ions indica te  t h a t  the  effect of this  deformat ion  on the  I -A  correc- 
t ion is not very large:. The results also indicate that the usual estimate of atomic 
core energy (denoted in this article by W) as - I is valid to within about i eV. 

Some arguments are presented for the interpretation that the basic AO's in the 
P-P-P method are the LOwDIN-type orthogonalized AO's. On the basis of this 
interpretation, a crude but simple expression for the core resonance integral was 
proposed. The estimate by this expression gives fair agreement with the empirical 
values for C-C, 0-0, C-N, and C-O bonds. 
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